Global Microturbine - Global Energy LLC


Publication Title | Investigation of Atomization, Mixing and Pollutant Emissions for a Microturbine Engine

Microturbine Search Engine Series

Capstone Turbine Publications search was updated real-time via Filemaker on:

Capstone Turbine Publications | Return to Search List

Search Completed | Title | Investigation of Atomization, Mixing and Pollutant Emissions for a Microturbine Engine
Original File Name Searched: 02_bolszo.pdf | Google It | Yahoo | Bing



Page Number: 001
Previous Page View | Next Page View

Text | Investigation of Atomization, Mixing and Pollutant Emissions for a Microturbine Engine | 001



Author

Christopher Bolszo’s research began with a strong interest in studying thermodynamics, fluid dynamics, and combus- tion, and their roles in energy generation and the environ- ment. This interest led him to his research on reducing pollu- tant emission levels in turbine generators under the guidance of Professor Samuelsen. Christopher, now a graduate student at UCI, hopes to expand on this work and pro- duce results that can be applied to advanced liquid fueled gas turbine systems. He describes his undergraduate research experience as a “very reward- ing opportunity to venture into the forefront of engineering,” a venture he hopes to build upon in the future.

Investigation of Atomization, Mixing and Pollutant Emissions for a Microturbine Engine

Christopher D. Bolszo

Aerospace Engineering and Mechanical Engineering

Abstract

duce up to 500kW of electrical power and are ideal for distributed power gener- S

mall gas turbine engines, referred to as a microturbine generators (MTGs), pro-

ation applications. By generating power where it is used (e.g., a commercial office building), using MTGs can increase the reliability and quality of the electrical power and allow the waste heat to be used to meet other energy requirements at the site. Combining electrical power generation with waste heat recovery, referred to as com- bined heat and power, substantially increases the overall efficiency of the unit and significantly reduces the mass emission of air pollutants per kW-hr of power gener- ated when compared to traditional reciprocating backup devices. This project addresses this issue experimentally by characterizing the pollutant emissions from a liquid fueled MTG (Capstone model C30), and establishing the extent to which the fuel preparation processes and operating parameters affect air pollutant emissions. The results reveal that the MTG selected produces low levels of pollutants compared to other technologies currently used. Furthermore, the research critically examines the steps associated with preparing the liquid fuel for combustion to identify further potential emissions reductions, demonstrates that emissions can be further reduced, and identifies a strategy to achieve the reduction.

Faculty Mentor

The majority of electric and motive power production in the world today uses combustion to transform the chemical energy bound in the fuel into thermal energy that can drive a piston, turn a turbine, or produce steam. Combustion is also responsible for the majority of the air pollutant and global climate change gases emitted into the troposphere. The reduction of pollutant impact from combustion is closely tied to the preparation of fuel and the mixing of the fuel

with air. This paper provides a basic understanding of the role of fuel air mixing in a liquid-fueled gas turbine engine and represents a major accomplishment by an undergraduate in the conduct of energy research.

Scott Samuelsen

Henry Samueli School of Engineering

Key Terms

Airblast Plain Jet Atomizer

Distributed Power

Generation

Equivalence Ratio

Evaporation Time

Lean Premixed

Prevaporized Combustion

Microturbine Generator

Sauter Mean Diameter

Weber Number

THE UCI UNDERGRADUATE RESEARCH JOURNAL 13

Image | Investigation of Atomization, Mixing and Pollutant Emissions for a Microturbine Engine



investigation-atomization-mixing-and-pollutant-emissions-microturbine-engine
Capstone Turbine For Sale - Microturbine C30 C65 C200 C600 C800 C1000 - Go to microturbine website

Search Engine Contact: greg@globalmicroturbine.com